Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy

نویسندگان

  • R H Kirschner
  • M Rusli
  • T E Martin
چکیده

We have used high resolution scanning electron microscopy (SEM) to study the nuclear envelope components of isolated mouse liver nuclei. The surfaces of intact nuclei are covered by closely packed ribosomes which are distinguishable by SEM from nuclear pore complexes. After removal of nuclear membranes with the nonionic detergent Triton X-100, the pore complexes remain attached to an underlying, peripheral nuclear lamina, as described by others. The surface of this dense lamina is composed of particulate granules, 75-150 A in diameter, which are contiguous over the entire periphery. We did not observe the pore-to-pore fibril network suggested by other investigators, but such a structure might be the framework upon which the dense lamina is formed. Morphometric analysis of pores and pore complexes shows their size, structure, and density to be similar to that of other mammalian cells. In addition, several types of pore complex-associated structures, not previously reported by other electron microscope (EM) techniques, are observed by SEM. Our studies suggest that the major role of the dense lamina is associated with the distribution, stability, and perhaps, biogenesis of nuclear pore complexes. Treatment of isolated nuclei with a combination of Triton X-100 and sodium deoxycholate removes membranes, dense lamina, and nuclear pore complexes. The resulting "chromatin nuclei" retain their integrity despite the absence of any limiting peripheral structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution scanning electron microscopy for the imaging of nuclear pore complexes and Ran-mediated transport.

High-resolution scanning electron microscopy provides three-dimensional surface images of nuclear pore complexes (NPCs) embedded in the nuclear envelope. Here, we describe a method for exposing the nuclear surface in mammalian tissue culture cells for imaging by scanning electron microscopy. Hypotonic treatment is followed by low-speed centrifugation onto polylysine-coated silicon chips, withou...

متن کامل

High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores

The nuclear envelope (NE) of amphibian oocytes can be readily isolated in relatively structurally intact and pure form and has been used extensively for structural studies. Using high resolution scanning electron microscopy (HRSEM), both surfaces of the NE can be visualized in detail. Here, we demonstrate the use of HRSEM to obtain high resolution information of NE structure, confirming previou...

متن کامل

The intriguing plant nuclear lamina

The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the n...

متن کامل

A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei

A modified procedure for the isolation of a nuclear pore complex-lamina fraction from rat liver nuclei is described. Evidence is provided that the isolated lamina, a 150-A thick, proteinaceous structure, apposes the inner nuclear envelope membrane, connecting nuclear pore complexes and surrounding the entire nucleus.

متن کامل

Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts.

Ran is a nuclear GTPase implicated in nucleocytoplasmic transport, the maintenance of nuclear structure, mRNA processing, and cell cycle regulation. By two-hybrid interaction in yeast, we have identified a Xenopus homologue of Ran-binding protein 1 (RanBP1). Xenopus RanBP1 interacts specifically with the GTP-bound form of Ran and forms complexes in Xenopus egg extracts with Ran, importin-beta/k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 72  شماره 

صفحات  -

تاریخ انتشار 1977